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Abstract  
Data Science, a new discovery paradigm, is potentially one of the most significant advances of 

the early 21st century. Originating in scientific discovery, it is being applied to every human endeavor for 
which there is adequate data. While remarkable successes have been achieved, even greater claims have 
been made. Benefits, challenge, and risks abound. The science underlying data science has yet to emerge. 
Maturity is more than a decade away. This claim is based firstly on observing the centuries-long 
developments of its predecessor paradigms – empirical, theoretical, and Jim Gray’s Fourth Paradigm of 
Scientific Discovery (Hey, Tansley & Tolle, 2009) (aka eScience, data-intensive, computational, procedural); 
and secondly on my studies of over 150 data science use cases, several data science-based startups, and, 
on my scientific advisory role for Insight1, a Data Science Research Institute (DSRI) that requires that I 
understand the opportunities, state of the art, and research challenges for the emerging discipline of data 
science. This chapter addresses essential questions for a DSRI: What is data science? and What is world-
class data science research? A companion chapter On Developing Data Science (Brodie, 2018b) addresses 
the development of data science applications and of the data science discipline itself. 

1 Introduction 
What can data science do? What characteristics distinguish data science from previous scientific 

discovery paradigms? What are the methods for conducting data science? What is the impact of data 
science? This chapter offers initial answers to these and related questions. A companion chapter (Brodie, 
2018b) addresses the development of data science as a discipline, as a methodology, as well as data 
science research and education. Let’s start with some slightly provocative claims concerning data science. 

Data science has been used successfully to accelerate discovery of probabilistic outcomes in many 
domains. Piketty’s (2014) monumental result on wealth and income inequality was achieved through data 
science. It used over 120 years of sporadic, incomplete, observational economic data, collected over ten 
years from all over the world (Brodie, 2014b). What is now called computational economics was used to 
establish the correlation, with a very high likelihood (0.90), that wealth gained from labor could never 
keep up with wealth gained from assets. What made front page news worldwide was a second, more 
dramatic correlation that there is a perpetual and growing wealth gap between the rich and the poor. This 
second correlation was not derived by data analysis but is a human interpretation of Piketty’s data 
analytic result. It contributed to making Capital in the 21st Century the best-selling book on economics, 
but possibly the least read. Within a year, the core result was verified by independent analyses to a far 
greater likelihood (0.99). One might expect that further confirmation of Piketty’s finding would be 
newsworthy; however, it was not as the more dramatic rich-poor correlation, while never analytically 
established had far greater appeal. This illustrates the benefits and risks of data science. 

Frequently, due to the lack of evidence, economic theories fail. Matthew Weinzierl, a leading 
Harvard University economist, questions such economic modelling in general saying, “that the world is 
too complicated to be modelled with anything like perfect accuracy” and "Used in isolation, however, it 
can lead to trouble” (Economist, February 2018). Reputedly, Einstein said: “Not everything that counts can 
be counted. Not everything that’s counted, counts”. The hope is that data science and computational 
economics will provide theories that are fact-based rather than based on hypotheses of “expert” 
economists (Economist, January 2018) leading to demonstrably provable economic theories, i.e., what 
really happened or will happen. This chapter suggests that this hope will not be realized this year.  

                                                             
1 https://www.insight-centre.org/ 



Many such outcomes2 have led to verified results through methods outside data science. Most 
current data analyses are domain specific, many even specific to classes of models, classes of analytical 
methods, and specific pipelines. Few data science methods have been generalized outside their original 
domains of application, let alone to all domains (to illustrated in a moment). A rare and excellent 
exception is a generic scientific discovery method over scientific corpora (Nagarajan et. al., 2015) 
generalized from a specific method over medical corpora developed for drug discovery (Spangler et. al., 
2014) that is detailed later in the chapter.  

It is often claimed that data science will transform conventional disciplines. While transformations 
are underway in many areas, including supply chain management3 (Waller and Fawcett, 2013) and 
chemical engineering (Data Science, 2018), only time and concrete results will tell the extent and value of 
the transformations. The companion chapter On Developing Data Science (Brodie, 2018b) discusses with 
the transformation myth.  

While there is much science in many domain-specific data science activities, there is little 
fundamental science that is applicable across domains. To warrant the designation data science, this 
emerging paradigm requires fundamental principles and techniques applicable to all relevant domains, 
just as the scientific principles of the scientific method apply across many domains. Since most data 
science work is domain specific, often model- and method-specific, data science does not yet warrant the 
designation as a science. 

This chapter explores the current nature of data science, its qualitative differences with its 
predecessor scientific discovery paradigms, its core value and components that, when mature, would 
warrant the designation data science. Descriptions of large-scale data science activities referenced in this 
chapter apply, scaled down, to data science activities of all sizes, including increasingly ubiquitous desktop 
data analytics in business. 

2 What is data science? 
Due to its remarkable popularity, there is a plethora of descriptions of data science, for example: 
 
Data Science is concerned with analyzing data and extracting useful knowledge from it. 
Building predictive models is usually the most important activity for a Data Scientist4. 
  
Data Science is concerned with analyzing Big Data to extract correlations with estimates 
of likelihood and error. (Brodie, 2015a) 
  
Data science is an emerging discipline that draws upon knowledge in statistical 
methodology and computer science to create impactful predictions and insights for a 
wide range of traditional scholarly fields5. 
  
Due to data science being in its infancy, these descriptions reflect some of the many contexts in 

which it is used. This is both natural and appropriate for an emerging discipline that involves many distinct 
disciplines and applications. A definition of data science requires the necessary and sufficient conditions 
that distinguish it from all other activities. While such a definition is premature, a working definition can 
be useful for discussion. The following definition is intended to explore the nature of this remarkable new 

                                                             
2 Not Piketty’s, since computational economics can find what might have happened - patterns, each with 
a given likelihood - but lacks the means of establishing causal relationships, i.e., establishing why, based 
solely on observational data. 
3 Selecting the best delivery route for 25 packages from 15 septillion alternatives, an ideal data science 
application, may explain the some of the $1.3trn to $2trn a year in economic value projected to be gained 
in the transformation of the supply chain industry due to AI-based data analytics (Economist, March 
2018). 
4 Gregory Piatetsky, KDnuggets, https://www.kdnuggets.com/tag/data-science 
5 Harvard Data Science Initiative https://datascience.harvard.edu 



discovery paradigm. It is based on studying over 150 data science use cases and benefits from three years 
research and experience over a previous version (Brodie, 2015a). Like many data science definitions, it will 
be improved over the next decade in which data science will mature and gain the designation as a new 
science. 

 
Data Science is a body of principles and techniques for applying data analytic 

methods to data at scale, including volume, velocity, and variety, to accelerate the 
investigation of phenomena represented by the data, by acquiring data, preparing and 
integrating it, possibly integrated with existing data, to discover correlations in the 
data, with measures of likelihood and within error bounds. Results are interpreted with 
respect to some predefined (theoretical, deductive, top-down) or emergent (fact-based, 
inductive, bottom-up) specification of the properties of the phenomena being 
investigated. 

 
A simple example of a data science analysis is the pothole detector developed at MIT (Eriksson 

et. al., 2008) to identify potholes on the streets of Cambridge, MA. The data was from inexpensive GPS 
and accelerometer devices placed in a fleet of taxis that drive over Cambridge streets. The model was 
designed ad hoc for this application. A model consists of the features (i.e., variables) essential to the 
analysis and the relationships amongst the features. It was developed in this case ad hoc by the team 
iteratively refining the model through imagination, observation, and analysis. Ultimately, it consisted of a 
large number of movement signatures, i.e., model features, each designed to detect specific movement 
types that may indicate potholes and non-potholes, e.g., manholes, railroad tracks6, doors opening and 
closing, stopping, starting, accelerating, etc. Additionally, the size of the pothole was estimated by the size 
of the movement. The analytical method was the algorithmic detection and filtering of non-pothole 
signatures leaving as a result those movements that correlate with potholes with an estimated severity, 
likelihood, and error bound. The severity and likelihood estimates were developed ad hoc based on 
verifying some portion of the detected movements with the corresponding road surfaces thus 
contributing to estimating the likelihood that the non-potholes were excluded, and potholes were 
included. Error bounds were based on the precision of the equipment, e.g., motion device readings, 
network communications, data errors, etc. The initial result was many thousands of locations with 
estimated severities, likelihoods, and error bounds. Conversion of likely pothole locations (correlations) to 
actual potholes severe enough to warrant repair (causal relationships between movements and potholes) 
were estimated by a manual inspection of some percentage of candidate potholes. The data from the 
inspection of the actual locations, called ground truth, was used to verify the likelihood estimates and 
establish a threshold above which confidence in the existence of a pothole warranted sending out a repair 
crew to repair the pothole. The customer, the City of Cambridge, MA, was given a list of these likely 
potholes. 

The immediate value of the pothole detector was that it reduced the search for potholes from 
manually inspecting 125 miles of roads and relying on citizen reports that takes months, to discovering 
                                                             
6 The pothole models consist of a number of signature movements, i.e., abstractions used to represent 
movements of the taxi, only some of which are related to the road surface. Each signature movement was 
created using the data (variables or features) available from a smartphone including the clock for time, 
the GPS for geographic location (latitude and longitude), and the accelerometer to measure changes in 
velocity along the x, y, and z axes. For example, the taxi crossing a railroad track would result in many 
signature “single tire crossing single rail line” movements, one for each of four tires crossing each of 
several rail lines. A “single tire crossing single rail line” involves a sudden, short vertical (x-axis) 
acceleration combined with a short lateral (y-axis) movement, forward or backward, with little or no 
lateral (z-axis) movement. Discounting the railroad crossing as a pothole involves recognizing a large 
number of movements as a taxi is crossing a rail line - all combinations of “single tire crossing single rail 
line” forward or backward, at any speed, and at any angle - to determine the corresponding staccato of 
the multiple single tire events over multiple lines. The pothole model is clearly ad hoc, in contrast to well 
established models in physics and retail marketing. 



likely, sever potholes within days of their creation. Since 2008, pothole detectors have been installed on 
city vehicles in many US cities. The pothole detector team created Cambridge Mobile Telematics that 
develops applications for vehicles sensor data, e.g., they annually produce reports on distracted driving 
across the USA based on data from over 100 million trips (Cambridge Mobile Telematics, 2018). While 
these applications were used initially by insurance companies they are part of the burgeoning domain of 
autonomous vehicles and are being used by the US National Academy of Sciences (Dingus T.A., 2016) for 
driving safety. 

3 Data science is a new paradigm of discovery 
Data science emerged from, and has many commonalities with, its predecessor paradigm, the 

scientific method7; however, they differ enough for data science to be considered a distinct, new 
paradigm. Like the scientific method, data science is based on principles and techniques required to 
conduct discovery activities that are typically defined in terms of a sequence of steps, called a workflow or 
pipeline; results are specified probabilistically and with error bounds based on the data, the model, and 
the analytical method used; and the results are interpreted in terms of the hypothesis being evaluated, 
the model, the methods, and the probabilistic outcome relative to the accepted requirements of the 
domain of the study. In both paradigms, models are collections of features (represented by variables that 
determine the data to be collected) that characterize the essential properties of the phenomenon being 
analyzed. Data corresponding to the features (variables) in the model are collected from real instances of 
the phenomena and analyzed using analytical methods developed for the type of analysis to be conducted 
and the nature of the data collected, e.g., different methods are required for integers uniformly 
distributed in time versus real numbers skewed due to properties of the phenomenon. The outcomes of 
the analysis are interpreted in terms of the phenomena being analyzed within bounds of precision and 
errors that result from the data, model, and method compared with the precision required in the domain 
being analyzed, e.g., particle physics requires precision of six standard deviations (six sigma). Data science 
differs paradigmatically from the scientific method in data, models, methods, and outcomes, as described 
below. Some differences may be due to data science being in its infancy, i.e., models for real-time cyber-
attacks may not yet have been developed and proven; however, some differences, discussed below, are 
inherent. We are in the process of learning which is which. 

3.1 Data science data, models, and methods  
Data science data is often obtained with limited knowledge of the conditions under which the 

data was generated, collected, and prepared for analysis, e.g., data found on the web; hence, it cannot be 
evaluated as in a scientific experiment that requires precise controls on the data. Such data is called 
observational. Compared with empirical scientific data, data science data is typically, but not necessarily, 
at scale by orders of magnitude in one or more of volume, velocity, and variety. Scale requires 
management and analytic methods seldom required in empirical science. 

Data science models used in most scientific domains have long histories of development, testing, 
and acceptance, e.g., the standard model of particle physics8 emerged in 1961 after decades of 
development and has matured over the subsequent decades. In contrast, currently data science models, 
e.g., for real-time bidding for online advertising, are created on demand for each data science activity 
using many different, innovative, and ad hoc methods. Once a model is proven, they can be accepted and 

                                                             
7 The scientific method is a body of techniques for investigating phenomena, acquiring new knowledge, or 
correcting and integrating previous knowledge. To be termed scientific, a method of inquiry is commonly 
based on empirical or measurable evidence subject to specific principles of reasoning. 
https://en.wikipedia.org/wiki/Scientific_method  
8 The Standard Model of particle physics is the theory describing three of the four known fundamental 
forces (the electromagnetic, weak, and strong interactions, and not including the gravitational force) in 
the universe, as well as classifying all known elementary particles. It was developed in stages throughout 
the latter half of the 20th century, through the work of many scientists around the world. 
https://en.wikipedia.org/wiki/Standard_Model  



put into productive use with periodic tuning, e.g., real-time ad placement products. It is likely that many 
proven data science models will emerge as data science modelling matures. StackAdapt.com has 
developed such a model for Real-time Bidding and programmatic ad purchasing (RTB) that is its core 
capability and intellectual property with which it has become a RTB world leader amongst 20 competitors 
worldwide. The StackAdapt model is used to scan 10 BN data points a day and manage up to 150,000 ad 
opportunity requests per second during peak times.  
  Data science analytical methods, like data science models, are often domain- and data-specific 
and are developed exclusively for a specific data science activity. There are generic methods, often named 
by a class name. For example, the primary classes of Machine Learning algorithms9 are: Linear Classifiers: 
Logistic Regression, Naive Bayes Classifier; Support Vector Machines; Decision Trees; Boosted Trees; 
Random Forest; Neural Networks; and Nearest Neighbor. There are generic algorithms for each class each 
of which can be applied in many domains. However, to be applied in a specific use case they must be 
refined or tuned often to the point of being applicable in that use case only. This is addressed in the next 
section that questions whether there are, as yet, underlying, thus generalizable, principles in data 
science.. 

Both models and methods require tuning or adjusting in time as more knowledge and data are 
obtained. Empirical scientific models tend to evolve slowly, e.g., the standard model of particle physics is 
modified slowly10; in contrast, data science models typically evolve rapidly throughout their design and 
development, and even in deployment, using dynamic learning. Typically, models and methods are 
trained using semi-automatic methods by which specific data or outcomes, called ground truth, are 
confirmed by humans as real to the model or method. More automatic methods, e.g., reinforcement 
learning and meta-learning11, are being developed by which models and methods are created 
automatically (Silver, 2017). 

3.2 Data science fundamentals: Is data science a science? 
  Currently, most data science results are domain-, method-, and even data-specific. This raises the 
question as to whether data science is yet a science, i.e., with generalizable results, or merely a collection 
of sophisticated analytical methods, with, as yet, a few underlying principles emerging, such as Bayes' 
Theorem, Uncle Bernie's rule12, and Information Bottleneck theory. The scientific method is defined by 
principles that ensure scientific objectivity, such as empirical design and the related controls to govern 
experimental design and execution. These and other scientific principles make experiments "scientific", 
the minimum requirement for a result to be considered scientific. Scientific experiments vary across 
domains, such as the statistical significance required in a given domain, e.g., two sigma has traditionally 
been adequate in many domains besides particle physics. A necessary, defining characteristic of data 
science is that the data is either at scale (Big Data) or observational (collected without knowing the 
provenance - what controls were applied or with no controls uniformly applied) as is generally the case in 
economics and social sciences. Under those conditions, data science cannot be "scientific", hence 
accommodations must be made to draw conclusions from analysis over such data. As data science is just 
emerging in each domain, we have few principles or guidelines per domain, e.g., statistical significance of 
results, or across all domains, e.g., the extent to which statistical significance is required in any data 
science analysis. The above mentioned pothole analysis was designed and executed by sheer intuition 
beyond the general ideas of identifying the hypothesis (find potholes using motion devices in taxis), 
experimental design (put devices in taxis and record their signals), modeling (what features are critical), 
and analysis (what motions indicate potholes, and which do not), and iteration of the model and analysis 
until acceptable precision was reached. The pothole data science activity did not draw on previous 
methods, nor did it offer, i.e., was not cited, principles for modeling, methods, or process. 

                                                             
9 https://medium.com/@sifium/machine-learning-types-of-classification-9497bd4f2e14  
10 Validating the Higgs-Boson took 49 years. 
11 http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/  
12 See Morgan, N., & Bourlard, H. (1990). Generalization and parameter estimation in feedforward nets: 
Some experiments. In Advances in neural information processing systems (pp. 630-637). 



Another practical example is at Tamr.com that offers one of the leading solutions for curating or 
preparing data at scale, e.g., data from 100,000 typically heterogeneous data sources. It launched initially 
with a comprehensive solution in the domain of information services. Tamr soon found that every new 
domain required a substantial revision of the machine learning component. Initially, like most AI-based 
startups, their initial solution was not generalizable. As can be seen at Tamr.com, Tamr now has solutions 
in many domains for which they have substantial commonality in the underlying solutions. 

Another fundamental difference between science and data science concerns the scale and 
nature of the outcomes. The scientific method is used to discover causal relationships between a small 
number of variables that represent the essential characteristics of the natural phenomena being analyzed. 
The experimental hypothesis defines the correlation to be evaluated for causality. The number of 
variables in a scientific experiment is kept small due to the cost of evaluating a potentially vast number of 
combinations of variables of interest. PhD theses, i.e., an experiment conducted by one person, are 
awarded on experiments with two or three but certainly less than ten variables. Large-scale experiments, 
e.g. LIGO13, Kepler14, and Higgs-Boson, may consider 100s of variables and take years and thousands of 
scientists to evaluate. Determining whether a correlation between variables is causal tends to be an 
expensive and slow process. 

Data science, on the other hand, is used to rapidly discover as many correlations between the 
data values as exist in the data set being analyzed, even with very large models (millions of variables) and 
vast data sets. Depending on the analytical method used, the number of variables in a data science 
analysis can be effectively unlimited, e.g., millions, even billions, as can be the number of correlations 
between those variables, e.g., billions or trillions. Data science analytics are executed by powerful, 
efficient algorithms using equally powerful computing infrastructure (CPUs, networks, storage). The 
combined power of new algorithms and infrastructure in the 1990’s led to the current efficacy of machine 
learning that in turn contributed to the emergence of data science. 

3.3 The prime benefit of data science is accelerating discovery 

Data science and empirical science differ dramatically, hence paradigmatically, in the scale of the 
data analyzed. Scientific experiments tend to evaluate a small number, e.g., 10s or 100s, of correlations to 
determine if they are causal, and do so over long periods of time, e.g., months or years. In contrast, data 
science can identify effectively unlimited numbers of correlations, e.g., millions, billions, or more, in short 
time periods, from minutes to days. It is in this sense that data science is said to accelerate discovery. 
Originally developed in the 1990’s for scientific discovery, the remarkable results of data science have 
resulted in its being applied to all endeavors for which adequate data is available. The prime benefit of 
data science is that it is a new paradigm for accelerating discovery, in general. 

Ideally, data science is used to accelerate discovery by rapidly reducing a vast search space to a 
small number of correlations that are likely to be casual, as indicated by their estimated probability. 
Depending on the resources available, some number of the probabilistic correlations are selected to be 
analyzed for causality by well-established (non-data science) means in the domain being analyzed. For 
example, data science has been used to accelerate cancer drug discovery. The Baylor-Watson study 
(Spangler et. al., 2014) used data science methods to identify nine likely cancer drug candidates. It used a 
simple, novel method to further evaluate their likelihood. The original analysis was conducted over drug 
research results published up to 2003 and identified nine likely candidate drugs. The likelihood of those 
nine candidate drugs was raised significantly when the research published from 2003 to 2013 showed that 
seven of the nine candidates had been validated as genuine cancer drugs. This raised the likelihood that 
the remaining two candidate drugs were real. Standard EPA-approved drug development and clinical trial 
testing were then used to develop the two new drugs. In this case, data science accelerated drug 
discovery for a specific type of cancer. It started with a vast search space of cancer research results from 
240,000 papers. In three months it discovered the two highly likely cancer drug candidates. Conventional 

                                                             
13 http://www.ligo.org/ 
14 https://keplerscience.arc.nasa.gov/ 



cancer drug discovery typically discovers one drug every two to three years. These times do not include 
the drug development and clinical trial periods. 

3.4 Causal reasoning in data science is complex and can be dangerous  
Just as the scale is radically different so is the nature of the results. The scientific method 

discovers results that, if executed correctly, are definitive, i.e., true or false, with a defined probability and 
error bound, that a hypothesized relationship is causal. Data science discovers a potentially large number 
of correlations each qualified by a probability and error bound that indicate the likelihood that the 
correlation may be true. Data science is used to discover correlations; it is rarely used to determine causal 
relationships. The previous sentence is often misunderstood not just by novices, but also, unfortunately, 
by data scientists. Empirical science discovers causal relationships in one step. Data science is frequently 
used to discover causal relationships in two steps: First, discover correlations with a strong likelihood of 
being causal; then use non-data science methods to validate causality. 

Causality is the Holy Grail of science, scientific discovery, and if feasible, of data science. 
Typically, the goal of analyzing a phenomenon is to understand Why some aspects of the phenomenon 
occur, for example, why does it rain? Prior to a full understanding of the phenomenon, initial discovery is 
often used to discover What conditions prevail when the phenomenon manifests, e.g., as rain starts and 
during rain many raised umbrellas can be observed. A more informed observer may also discover specific 
climatic conditions. All of the conditions observed to be present consistently before and during the rain 
could be said to be correlated with rain. However, correlation does not imply causation, e.g., raised 
umbrellas may be correlated with rain, but do not cause the rain (Brodie, 2014a). A more realistic 
example comes from an online retailer that observing that increased sales were correlated with 
customers purchasing with their mobile app, invested significantly to get their app onto many customers’ 
smartphones. However, the investment was lost since sales did not increase. Increased purchases were 
correlated with mobile apps on customers’ smartphones; however, the causal factor was customer loyalty 
and, due to their loyalty, most loyal customers already had the app on their smartphones.  

Data Science is used predominantly to discover What. Empirical science and many other methods 
are used to discover Why (Brodie, 2018a). Data science is often used to rapidly reduce the search space 
from a vast number of correlations or possible results to a much smaller number. The much smaller 
number of highly probable results are then analyzed with non-data science methods, such as scientific 
experiments or clinical trials, to verify or reject the result, i.e., automatically generated hypotheses, as 
causal.  

There are mathematics and methods claimed for deducing causal effects from observational data 
(i.e., data not from controlled experiments but from surveys, censuses, administrative records, and other 
typically uncontrolled sources such as in Big Data and data science). They are very sophisticated and 
require a deep understanding of the mathematics, statistics, and related modelling methods. Judea Pearl 
has developed such methods based on statistics, Bayesian networks, and related modelling, see (Pearl, 
2009a,b,c). For decades, statisticians and econometricians have developed such methods with which to 
estimate causal effects from observational data, since most social and economic data is purely 
observational (Winship et. al., 1999). 

Causal reasoning involves going beyond the mathematics and modelling for data science in which 
correlations are obtained. “One of Pearl’s early lessons is that it’s only possible to draw causal conclusions 
from observational (correlational) data if you are willing to make some assumptions about the way that 
the data were sampled and about the absence of certain confounding influences. Thus, my understanding 
is that one can draw causal conclusions, but it’s important to remember that these are really conditional 
on the validity of those assumptions.” says Peter Szolovits, Professor, CSAIL, MIT, with a decade of 
experience applying data science in medical contexts for which he provided an example15. 

                                                             
15 The full quote from personal communication: “There are various sophisticated ways to do all this but let me give you a relatively 
simple example: Suppose that we observe that in some cohort of patients, some were treated with drug X and others with drug Y. 
Suppose further that we see that fewer of the X patients died than of the Y ones. It’s certainly NOT acceptable to conclude that X is a 
better drug, because we can’t exclude the possibility that the treating doctors’ choice of X or Y depended on some characteristics of 



Finding correlations between variables in (Big) data together with probabilities or likelihoods of 
the correlation occurring in the past or future, are relatively easy to understand and safe to report. 
Making a causal statement can be misleading or dangerous depending on the proposed actions to be 
taken as a consequence. Hence, I do not condone nor confirm causal reasoning; it is above my pay grade; 
hence, I quote experts on the topic rather than make my own assertions. I recommend that causal 
reasoning not be applied without the required depth of knowledge and experience, because making 
causal statements as a result of data science analysis could be dangerous. In lecturing on correlation 
versus causation for over five years, I have found that an inordinate amount of interest is given to this 
difficult and little understood topic, perhaps with a desire to be able to provide definitive answers, even 
when there are none. I have found no simple explanation. You either study, understand, and practice 
causal reasoning with the appropriate care or simply stay away until you are prepared. Experts are 
appropriately cautious. “I have not, so far, made causal claims based on my work, mainly because I have 
not felt strongly enough that I could defend the independence assumptions needed to make such claims. 
However, I think the kinds of associational results are still possibly helpful for decision makers when 
combined with intuition and understanding. Nevertheless, I think most clinicians today do not use 
predictive models other than for more administrative tasks such as staffing or predicting bed occupancy” 
– Peter Szolovits, MIT. “I firmly believe that [deriving] causal results from observational data is one of the 
grand challenges of the data science agenda!” – David Parkes, co-lead of the Harvard Data Science 
Initiative. "Pearl once explained those ideas to me personally at Santa Catalina workshop, but I still don’t 
fully understand them either :)” – Gregory Piatetsky-Shapiro, President of KDnuggets, co-founder of KDD 
Conferences and ACM SIGKDD. 

3.5 Data science flexibility: data-driven or hypothesis-driven 
Empirical science and data science have another fundamental difference. The scientific method 

uses deductive reasoning, also called hypothesis-driven, theory-driven, and top-down. Deductive 
reasoning is used when specific hypotheses are to be evaluated against observations or data. A scientific 
experiment starts by formulating a hypothesis to be evaluated. An experiment is designed and executed, 
and the results interpreted to determine if the hypothesis is true or false under the conditions defined for 
the hypothesis. It is called theory-driven in that a theory is developed, expressed as a hypothesis, and an 
experiment designed to prove or invalidate the hypothesis. It is called top-down since the experiment 
starts at the top – with the idea – and goes down to the data to determine if the idea is true. 

Data science can be hypothesis-driven. That is, as with empirical science, a data science activity 
can start with a hypothesis to be evaluated. Unlike empirical science, the hypothesis can be stated with 
less precision and the models, methods, and data can be much larger in scale, i.e., more variables, data 
volume, velocity, and variety. In comparison, data science accelerates discovery by rapidly reducing a 
vastly larger search space than would have been considered for empirical methods, to a small set of likely 
correlations; however, unlike empirical science, the results are correlations that require additional, non-
data science methods to achieve definitive, causal results. 

One of the greatest advantages of data science is that it can discover patterns or correlations in 
data at scale vastly beyond human intellectual, let alone temporal, capacity; far beyond what humans 

                                                                                                                                                                                     
the patient that also influenced their likelihood of survival. E.g., maybe the people who got Y were much sicker to start with, because 
Y is a stronger and more dangerous drug, so it is only given to the sickest patients. 

One way to try to mitigate this is to build a model from all the data we have about the patients in the cohort that predicts 
whether they are likely to get X or Y. Then we stratify the cohort by the probability of getting X, say. This is called a propensity score. 
Among those people with a high score, most will probably actually get X (that’s how we built the model), but some will nevertheless 
get Y, and vice versa. If we assume that the doctors choosing the drug have no more information than the propensity model, then 
we treat their choice to give X or Y as a random choice, and we analyze the resulting data as if, for each stratum, patients were 
randomized into getting either X or Y, as they might have been in a real clinical trial. Then we analyze the results under that 
assumption. For many of the strata where the propensity is not near .5, the drugs given will be unbalanced, which makes the 
statistical power of the analysis lower, but there are statistical methods for dealing with this. Of course, the conclusions one draws 
are still very much dependent of the assumption that, within each stratum, the doctors’ choice of drug really is random, and not a 
function of some difference among the patients that was not captured in the data from which the propensity model was built. 

This is just one of numerous methods people have invented, but it is typical of the kinds of assumptions one has to make 
in order to draw causal conclusions from data.” 



could have conceived. Of course, a vast subset of those found may be entirely spurious. Data science can 
use inductive reasoning, also called bottom-up, data-driven, or fact-based analysis, not to evaluate 
specific hypotheses but using an analytical model and method to identify patterns or correlations that 
occur in the data with a specific frequency. If the frequency meets some predefined specification, e.g., 
statistical significance in the domain being analyzed, it can be interpreted as a measure of likelihood of 
the pattern being real. As opposed to evaluating pre-defined hypotheses in the theory-driven approach, 
the data-driven approach is often said to “automatically” generate hypotheses, as in (Nagarajan, 2015). 
The inductive capacity of data science is often touted as its magic as the machine or methods such as 
machine learning, “automatically” and efficiently discover likely hypotheses from the data. While the 
acceleration and the scale of data being analyzed are major breakthroughs in discovery, the magic should 
be moderated by the fact that the discovered hypotheses are derived from the models and methods used 
to discover them. The appearance of magic may derive from the fact that we may not understand how 
some analytical methods, e.g., some machine learning and deep learning methods, derive their results. 
This is a fundamental data science research challenge as we would like to understand the reasoning that 
led to a discovery, as is required in medicine, and in 2018 in the European Union, by law (the General Data 
Protection Regulation (GDPR16)). 

3.6 Data science is in its infancy 

  The excitement around data science and its many successes are wonderful, and the potential of 
data science is great, but these positive signs can be misleading. Not only is data science in its infancy as a 
science and a discipline, its current practice has a large learning curve related largely to the issues raised 
above. Gartner, Forrester, and other technology analysts report that most (80%) early (2010-2012) data 
science projects in most US enterprises failed. In late 2016, Gartner reported that while most enterprises 
declare data science as a core expertise, only 15% claim to have deployed big data projects in their 
organization (Gartner, 2016). Analysts predict 80+% failure rate through 2017 (Demirkan & Dal, 2014) 
(Veeramachaneni, K. 2016) (Lohr & Singer, 2016). 

3.7 It’s more complicated than that 
Data science methods are more sophisticated than the above descriptions suggest, and data-

driven analyses are not as pure. Data science analytical methods and models do not discover any and all 
correlations that exist in the data since they are discovered using algorithms and models that incorporate 
some hypotheses that could be considered biases. That is, you discover what the models and methods are 
designed to discover. One must be objective in data science across the entire workflow - data selection, 
preparation, modelling, analysis, and interpretation; hence, a data scientist must always Doubt and Verify 
(Brodie, 2015b). 

It may be useful to experiment with the models and methods. When a data science analysis 
reduces a vast search space, it (or the observing human) may learn something about the discovered 
correlations and may warrant an adjustment and re-running the model, the method, or even adjusting the 
data set. Hence, iterative learning cycles may increase the efficacy of the analysis or simply provide a 
means of exploring the data science analysis search space.  

Top-down and bottom-up analytical methods can be used in combination, as follows. Start with a 
bottom-up analysis that produces N candidate correlations. Select a subset of K of the correlations with 
an acceptable likelihood and treat them as hypotheses to be evaluated. Then use them to run hypothesis-
driven data science analyses and determine, based on the results, which hypotheses are again the most 
likely or perhaps even more likely than the previous run and discard the rest. These results can be used in 
turn to redesign the data science analysis, e.g., iteratively modify the data, model, and method, and 
repeat the cycle. This approach is used to explore data, models, and methods - the main components of a 
data science activity. This method of combining top-down and bottom-up analysis has been proposed by 
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CancerCommons, as a method for accelerating the development of cancer cures as part of the emerging 
field of translational medicine.17  

4 Data science components 
Extending the analogy with science and the scientific method, data science, when mature, will be a 

systematic discipline with components that are applicable to most domains – to most human endeavors. 
There are four categories of data science components, all emergent in the data science context awaiting 
research and development: 1) principles, data, models, and methods; 2) data science pipelines; 3) data 
science infrastructure; and 4) data infrastructure. Below, we discuss these components in terms of their 
support of a specific data science activity. 

Successful data science activities have developed and deployed these components specific to their 
domain and analysis. To be considered a science, these components must be generalized across multiple 
domains, just as the scientific method applies to most scientific domains, and in the last century has been 
applied to domains previously not considered scientific, e.g., economics, humanities, literature, 
psychology, sociology, and history. 

4.1 Data science principles, data, models, and methods  
A data science activity must be based on data science principles, models, and analytical methods. 

Principles include those of science and of the scientific method applied to data science, for example, 
deductive and inductive reasoning, objectivity or lack of bias relative to a given factor, reproducibility, and 
provenance. Particularly important are collaborative and cross-disciplinary methods. How do scientific 
principles apply to discovery over data? What principles underlie evidence-based reasoning for planning, 
predicting, decision-making, and policy-making in a specific domain? 

In May 2017, the Economist declared, on its front cover, that data was The World’s Most Valuable 
Resource (Economist, May 2017). Without data there would be no data science or any of its benefits. Data 
management has been a cornerstone of computer science technology, education, and research for over 
50 years, yet Big Data that is fueling data science, is typically defined as data at volumes, velocities, and 
variety that cannot be handled by data management technology. A simple example is that data 
management functions in preparing data for data analysis take 80% of the resources and time for most 
data science activities. Data management research is in the process of flipping that ratio so that 80% of 
resources can be devoted to analysis. Discovering data required for a data science activity whether inside 
or outside an organization is far worse. Fundamental data research is required in each step of the data 
science pipeline to realize the benefits of data science. 

A data science activity uses one or more models. A model represents the parameters that are the 
critical properties of the phenomenon to be analyzed. It often takes multiple models to capture all 
relevant features. For example, the LIGO experiment, that won the 2017 Nobel Prize in Physics for 
empirically establishing the existence of Einstein's gravitational waves, had to distinguish movement from 
gravitational waves from seismic activity and 100,000 other types of movement. LIGO required a model 
for each movement type so as to recognize it in the data and discard it as gravitational wave activity. 
Models are typically domain specific, e.g., seismic versus sonic, and are often already established in the 
domain. Increasingly, models are developed specifically for a data science activity, e.g., feature extraction 
from a data set is common for many AI methods. Data science activities often require the continuous 
refinement of a model to meet the analytical requirements of the activity. This leads to the need for 
model management to capture the settings and results of the planned and evaluated model variations. It 
is increasingly common, as in biology, to use multiple, distinct models, called an ensemble of models, each 
of which provides insights from a particular perspective. Each model, like each person in Plato’s Allegory 
of the Cave, represents a different perspective of the same phenomenon, what Plato called shadows. 
Each model – each person – observes what appears to be the same phenomenon, yet each sees it 
differently. No one model – person – sees the entire thing, yet collectively they capture the whole 
phenomenon from many perspectives. It may also be that a critical perspective is missed. It is rarely 
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necessary, feasible, or of value to integrate different perspectives into a single integrated model. After all, 
there is no ultimate or truthful model save the phenomenon itself. Ensemble or shadow modelling is a 
natural and nuanced form of data integration (Liu, 2012) analogous to ensemble modelling in biology and 
ensemble learning (Dietterich, 2000) and forecasting in other domains. 

A data science activity can involve many analytical methods. A given method or algorithm is 
designed to analyze specific features of a data set. There are often variations of a method depending on 
the characteristics of the data set, e.g., sparse or dense, uniform or skewed, data type, data volume, etc., 
hence methods must be selected, or created, and tuned for the data set and analytical requirements, and 
validated. In an analysis, there could be as many methods as there are specific features with 
corresponding specific data set types. Compared with analytical methods in science, their definition, 
selection, tuning, and validation in data science often involves scale in choice and computational 
requirements. Unless they are experts in the related methods, it is unlikely that a practicing data scientist 
understands the analytical method, e.g., a specific machine learning approach, that they are applying 
relative to the analysis and data characteristics, let alone the thousands of available alternatives. 
Anecdotally, I have found that many practicing data scientists use the algorithms that they were taught 
rather than selecting the one most applicable to the analysis at hand. There are significant challenges in 
applying sophisticated analytical models and methods in business (Forrester, 2015). Having selected or 
created and refined the appropriate model, i.e., collection of features that determine the data to be 
collected, collected and prepared the data to comply with the requirements of the model, and selected 
and refined the appropriate analytical method, the next challenge is interpreting the results and, based on 
the data, model, and method, evaluate the likelihood, within relevant error bounds, that the results are 
meaningful hypotheses worthy of validating by other means. 

4.2 Data science workflows or pipelines 
The central organizing principle of a data science activity is its workflow or pipeline and its life 

cycle management (NSF, 2016). A data science pipeline is an end-to-end sequence of steps from data 
discovery to the publication of the qualified, probabilistic interpretation of the result in the form of a data 
product. A generic data science pipeline, such as listed below, is comprehensive of all data science 
activities, hence can be used to define the scope of data science. 
  

1. Raw data discovery, acquisition, preparation, and storage as curated data in data repositories  
2. Selection and acquisition of curated data from data repositories for data analysis  
3. Data analysis 
4. Results interpretation 
5. Result publication and optionally operationalize the pipeline for continuous analyses 

 
The state of the art of data science is such that every data science activity has its own unique 

pipeline, as each data science activity is unique. Due to the emergence and broad applicability of data 
science, there is far more variation across data science pipelines than across conventional science 
pipelines. Data science will benefit, as it develops, from a better understanding of pipelines and guidance 
on their design and development. 

Data science pipelines are often considered only in terms of the analytics, e.g., the machine 
learning algorithms used to derive the results in step 3. However, most of the resources required to 
design, tune, and execute a data science activity are required not for data analysis, steps 3 and 4 of a data 
science pipeline, but for the design and development of the pipeline and for steps 1 and 2. 

The design, development, and tuning of an end-to-end pipeline for a data science activity typically 
poses significant data modelling, preparation, and management challenges often requiring significant 
resources and time required to develop and execute a data science activity. Two examples are 
astrophysical experiments, the Kepler Space Telescope launched in 2009 to find exoplanets and Laser 
Interferometer Gravitational-Wave Observatory (LIGO) that was awarded the 2017 Nobel Prize in Physics. 
Initial versions of the experiments failed not because of analysis and astrophysical aspects and models, 
but due to the data pipelines. Due to unanticipated issues with the data, the Kepler Science Pipeline had 



to be rewritten (Jenkins, 2010) while Kepler was inflight retaining all data for subsequent corrected 
processing. Similarly, earth-based LIGO’s pipeline was rewritten (Singh, 2007) and renamed Advanced 
LIGO. Tuning or replacing the faulty pipelines delayed both experiments by approximately one year. 

Once the data has been acquired, the most time-consuming activity in developing a pipeline was data 
preparation. Early data science activities in 2003 reported 80-90% of resources devoted to data 
preparation (Dasu & Johnson, 2003). By 2014 this was reduced to 50-80% (Lohr, 2014). In specific cases, 
this cost negatively impacted some domains (Reimsbach-Kounatze, 2015) due to the massive growth of 
acquired data. As data science blossomed so did data volumes, leading experts in 2015 to analyze the 
state of the art and estimating that data preparation typically consumed 80% of resources (Castanedo, 
2015). By then products to curate data at scale, such as Tamr.com, were maturing and being more widely 
adopted. Due to the visibility of data science, the popular press surveyed data scientists to confirm the 
80% estimates (Press, 2016; Thakur 2016). In 2017, technical evaluations of data preparation products 
and their use again identified the 2003 estimates of 80% (Mayo, 2017) (Gartner G00315888, 2017). 

4.3 Data science and data infrastructures 
The core technical component for a data science activity is a data science infrastructure that 

supports the steps of the data science pipeline throughout its life cycle. A data science infrastructure 
consists of a workflow platform that supports the definition, refinement, execution, and reporting of data 
science activities in the pipeline. The workflow platform is supported by the infrastructure required to 
support workflow tasks such as data discovery, data mining, data preparation, data management, 
networking, libraries of analytical models and analytical methods, visualization, etc. To support user 
productivity, a user interface is required for each class of user, each with their own user experience. There 
are more than 60 such data science platforms - a new class of product - of which 16 meet analysts’ 
requirements (Gartner G00301536, 2017) (Gartner G00326671, 2017) (Forrester, 2017). These products 
are complex with over 15 component products such as database management, model management, 
machine learning, advanced analytics, data exploration, visualization, and data preparation. The large 
number of products reflects the desire to get into a potentially large, emerging market; regardless of their 
current ability to support data science18. 

Data, the world’s most valuable resource (Economist, May 2017), is also the most valuable resource 
for the data science activities of an organization (e.g., commercial, educational, research, governmental) 
and for entire communities. While new data is always required for an existing or new data science 
activity, data science activities of an organization require a data infrastructure – a sustainable, robust 
data infrastructure consisting of repositories of raw and curated data required to support the data 
requirements of the organization’s data science activities with the associated support processes such as 
data stewardship. Many organizations are just developing data infrastructures for data science, aka data 
science platforms. The best known are those that support large research communities. The US National 
Research Foundation is developing the Sustainable Digital Data Preservation and Access Network Partners 
to support data science for national science and engineering research and education. The 1000 Genomes 
Project Consortium created the world’s largest catalog of genomic differences among humans, providing 
researchers worldwide with powerful clues to help them establish why some people are susceptible to 
various diseases. There are more than ten additional genomics data infrastructures, including the Cancer 
Genome Atlas of the US National Institutes of Health, Intel’s Collaborative Cancer Cloud, and the Seven 
Bridges Cancer Cloud. Amazon hosts19 the 1000 Genome Project and 30 other public data 
infrastructures on topics such as geospatial and environmental datasets, genomics and life science 
datasets, and datasets for machine learning. The Swiss Data Science Center started developing the Renga 
platform20 to support data scientists with their complete workflow. 
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5 What is the method for conducting data science? 
A data science activity is developed based on data science principles, models and analytical 

methods. The result of its design and development is a data science pipeline that will operate on a data 
science infrastructure, or platform, and will access data in a data infrastructure. There are a myriad of 
design and development methods to get from the principles to the pipeline. What follows is a description 
of a fairly generic data science method.  

The data science method, until better alternatives arise, is modelled on the scientific method. The 
following is one example of applying the empirical approach to data science analysis, analogous to 
experimental design for science experiments. Each step requires verification, e.g., using experts, 
published literature, previous analysis; and continuous iterative improvement to reach results that meet a 
predefined specification. Each step may require revisiting a previous step, depending on its outcome. As 
with any scientific analysis, every attempt should be made to avoid bias, namely, attempting to prove 
preconceived ideas beyond the model, methods, and hypotheses. The method may run for hours to days 
for a small analysis; months, as for the Baylor-Watson drug discovery (Spangler et. al., 2014); or years, as 
for the Kepler Space Telescope and LIGO. Design and development times can be similar to run times. Otto 
for example, a German e-commerce merchant, developed over months an AI-based system that predicts 
with 90% accuracy what products will be sold in the next 30 days and a companion system that 
automatically purchases over 200,000 products21 a month from third-party brands without human 
intervention. Otto selected, modified, and tuned a deep-learning algorithm originally designed for 
particle-physics experiments at CERN (Economist, April 2017). These systems run continuously. 

5.1 A Generic Data Science Method22 
1. Identify the phenomena or problem to be investigated. What is the desired outcome? 
2. Using domain knowledge, define the problem in terms of features that represent the critical 

factors or parameters to be analyzed (the WHAT of your analysis, that collectively form the 
model), based on the data likely to be available for the analysis. Understanding the domain 
precedes defining hypotheses to avoid bias. 

3. If the analysis is to be top-down, formulate the hypotheses to be evaluated over the parameters 
and models. 

4. Design the analysis in terms of an end-to-end workflow or pipeline from the data discovery and 
acquisition, through analysis and results interpretation. The analysis should be designed to 
identify probabilistically significant correlations (What) and set requirements for acceptable 
likelihoods and error bounds. 

5. Ensure the conceptual validity of the data analysis design. 
6. Design, test, and evaluate each step in the pipeline, selecting the relevant methods, i.e., class of 

relevant algorithms, in preparation for developing the following steps.  
a. Discover, acquire, and prepare data required for the parameters and models ensuring 

that the results are consistent with previous steps. 
b. For each analytical method, select and tune the relevant algorithm to meet the 

analytical requirements. This and the previous step are highly interrelated and often 
executed iteratively until the requirements are met with test or training data. 

c. Ensure the validity of the data analysis implementation. 
7. Execute the pipeline ensuring that requirements, e.g., probabilities and error bounds, are met. 
8. Ensure empirical (common sense) validation - the validity of the results with respect to the 

phenomena being investigated. 
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9. Interpret the results with respect to the models, methods, and data analytic requirements. 
Evaluate the results (patterns or correlations) that meet the requirements for causality to be 
validated by methods outside data science. 

10. If the pipeline is to operate continuously, operationalize and monitor the pipeline and its results. 

6 What is data science in practice? 
Each data science activity develops its own unique data science method. Three very successful data 

science activities are described below in point form descriptions, using the above terminology to illustrate 
the components of data science in practice. They were conducted over 18, 20, and 2 years respectively. 
Their data science pipelines operated for 4 years, 3 years (to date), and 3 months respectively. 

6.1 Kepler Space Telescope: Discovering Exoplanets  
The Kepler Space Telescope, initiated in 1999, and its successor project K2, have catalogued 

thousands of exoplanets by means of data analytics over Big Data. A detailed description of Kepler and 
access to its data is at NASA’s Kepler & K2 Website23. 

● Objective and phenomenon: Discover exoplanets in telescopic images 
● Project: NASA-led collaboration of US government agencies, universities, and companies. 
● Critical parameters: Over 100, e.g., planet luminosity, temperature, planet location relative to its 

sun. 
● Models: There are over 30 established astrophysical models. A key Kepler model is the 

relationship between luminosity, size, and temperature. This model was established a century 
ago by Ejnar Hertzsprung and Henry Russell. This illustrates the fact that data science involves 
many models and analytical methods that have nothing to do with AI. 

● Methods: Over 100, e.g., multi-scale Bayesian Maximum A Priori method used for systematic 
error removal from raw data. AI was not a principle method in this project. 

● Hypotheses (stated in Kepler documents as a query): Five, including “Determine the percentage 
of terrestrial and larger planets that are in or near the habitable zone of a wide variety of stars”. 

● Data: 100’s of data types described in the Data Characteristics Handbook24 in the NASA 
Exoplanet Archive25 

● Pipeline: The Kepler Science Pipeline26 failed almost immediately after launch due to 
temperature and other unanticipated issues. After being repaired from earth, it worked well for 
4 years. 

● Data discovery and acquisition: Required approximately 90% of the total effort and resources. 
● Algorithm selecting and tuning: Models and methods were selected, developed, tuned and 

tested for the decade from project inception in 1999 to satellite launch in 2009, and were refined 
continuously. 

● Verification: Every model and method were verified, e.g., exoplanet observations were verified 
using the Keck observatory in Hawaii. 

● Probabilistic outcomes27 
Kepler: 
● Candidates (<95%): 4,496 
● Confirmed (>99%): 2,330 
● Confirmed: <2X Earth-size in habitable zone: 30 
● Probably (<99%): 1,285 
● Probably not (~99%): 707 
K2: 
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● Candidate (<95%): 521 
● Confirmed (>99%): 140 

6.2 LIGO: Detecting Gravitational Waves 
The LIGO project detected cosmic gravitational waves predicted by Einstein’s 1916 Theory of 

General Relativity for which it’s originators were awarded the 2017 Nobel Prize. Project information and 
its data are available at the LIGO Scientific Collaboration website28. 

● Objective and phenomenon: Observe cosmic gravitational waves. 
● Project: Initiated in 1997 with 1,000 scientists in 100 institutes across 18 countries. 
● Equipment: Laser Interferometer Gravitational-Wave Observatory (world’s most sensitive 

detector). 
● Go Live: September 2015 (after a massive upgrade). 
● Data: 100,000 channels of measurement of which one is for gravitational waves. 
● Models: At least one model per channel. 
● Methods: At least one data analysis method per data type being analyzed. Initially, AI was not 

used. In the past two years Machine Learning has been found to be very effective in many areas, 
e.g., detector malfunctions, earthquake detection.  

● Challenges: Equipment and pipeline (as is typical in data science activities). 
● Results: 

o In September 2015 (moments after reboot following the massive upgrade), a 
gravitational wave, ripples in the fabric of space-time, was detected and estimated to be 
the result of two black holes colliding 1.3BN light years from Earth. 

o Since then, four more gravitational waves were detected, one as this chapter went to 
press. 

● Collaboration: The project depended on continuous collaboration between experimentalists who 
developed the equipment and theorists who defined what a signal from two black holes colliding 
would look like, let alone collaboration scientists, institutes, and countries. 

6.3 Baylor-Watson: Cancer Drug Discovery 
The Baylor-Watson drug discovery project (Spangler et. al., 2014) is a wonderful example of data-

driven discovery and automatic hypothesis generation that discovered two novel kinases as potential 
sources for cancer drug development. These results that were determined to have a very high likelihood 
of success were developed in three months using IBM’s Watson compared with the typical multi-year 
efforts that typically discover one candidate in two years. 

● Objective and phenomenon: Discover kinases that regulate protein p53 to reduce or stem 
cancerous cell growth that have not yet been evaluated as a potential cancer drug. 

● Project: Two years starting in 2012 between IBM Watson and the Baylor College of Medicine. 
● Equipment: Watson as a data science platform; PubMed as data repository containing a corpus 

of 23M medical research articles. 
● Data: 23M abstracts reduced to 240,00 papers on kinases reduced to 70,000 papers on kinases 

that regulate protein p53. 
● Hypothesis: Some of 500 kinases in the corpus regulate p53 and have not yet been used for 

drugs. 
● AI Models / methods: network analysis (Nagarajan, 2015) including textual analysis, graphical 

models of proteins and kinases, and similarity analysis.  
● Pipeline: Explore, Interpret, and Analyze 

o Explore: Scan abstracts to select kinase papers using text signatures.  
o Interpret: Extract kinase entities from papers and build connected graph of similarity 

amongst kinases. 
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o Analyze: Diffuse annotations over kinases to rank order the best candidates for further 
experimentation. 

● Data discovery and acquisition: Textual analysis of PubMed. 
● Challenge: Designing, developing and tuning models and methods to scan abstracts for relevant 

papers; to construct a graphical model of the relevant relationships, to select kinases that 
regulate p53. 

● Execution: 3 months. 
● Results: Two potential cancer drugs in 3 months versus 1 every 2 years (acceleration). 
● Validation: The methods discovered 9 kinases of interest analyzing the corpus up to 2003; 7 of 9 

were empirically verified in the period 2003-2013. This raised the probability that the remaining 
two that had not yet been verified clinically, were highly likely candidates. 

● Causality: Work is underway to develop drugs that use the kinases to regulate p53 to stem or 
reduce cancerous cell growth. 

● Collaboration: The project involved collaboration between genetic researchers, oncologists, 
experts in AI and natural language understanding, and computer scientists. 

7 How important is collaboration in data science?  
Data science is an inherently multidisciplinary activity, just as most human endeavors require 

knowledge, expertise, methods, and tools from multiple disciplines. Analyzing real world phenomena 
requires multidisciplinary approaches, e.g., how can you analyze the politics of a significant event without 
considering the economic factors (Brodie, 2015c)? Data science requires expertise from multiple 
disciplines, from the subject domain, statistics, AI, analytics, mathematics, computing, and many more. 
However, multidisciplinary collaboration is especially critical for success at this early time in the 
emergence of data science. Success and advancement in research and industry are typically based on 
competitive achievements of individual people or teams rather than on collaboration. While collaboration 
and multidisciplinary thinking are praised, they are seldom taught or practiced. Successful data science 
requires a behaviour change from competition to collaboration. 

For disciplines required by scientific activities, there are well-established principles, methods, and 
tools from each discipline as well as how they are applied across scientific workflows. Collaboration was 
built into these mature disciplines and workflows years ago. In contrast, the principles, methods, and 
tools for each relevant discipline are just emerging for data science, as are methods of collaboration 
across workflows. 

Currently, data science requires a data scientist to know the sources, conditions, and nature of the 
data to ensure that the domain specific model has the appropriate data. Rather than becoming a data 
expert the data scientist collaborates with a data expert. Rather than becoming an AI expert, a data 
scientist may need to collaborate with an AI expert to ensure the appropriate analytical methods are 
used. There can be as many as ten29 disciplines involved in such an activity. Two current challenges in this 
regard are: 1) the shortage of data science-savvy experts, and 2) moving from a world of individual work 
to one of collaboration. Both challenges are being addressed by universities and institutes worldwide; 
however, the knowledge, as discussed above, and the teachers are themselves new to this game. 

The need for collaboration on basic research and engineering on the fundamental building blocks of 
data science and data science infrastructures can be seen in a recent report from University of California, 
Berkeley researchers (Stoica, 2017). The report is a collaborative effort from experts from many domains 
– statistics, AI, data management, systems, security, data centers, distributed computing, and more.  

Data science activities have emerged in most research labs in most universities and national research 
labs. Until 2017, many Harvard University departments had one or more groups conducting data science 
research and offered a myriad of data science degrees and certificates. In March 2017, the Harvard Data 
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Science initiative30 was established to coordinate the many activities. This pattern has repeated at over 
120 major universities worldwide, resulting in over 150 DSRIs31 being established since 2015 – themselves 
just emerging. The creation of over 150 DSRIs in approximately two years, most heavily funded by 
governments and by partner industrial organizations, is an indication of the belief in the potential of data 
science not just as a new discovery paradigm, but as a basis for business and economic growth. 

Collaboration is an emerging challenge in data science not only at the scientific level but also at the 
strategic and organizational levels. Analysts report that most early industry big data deployments failed 
due to a lack of domain-business-analytics-IT collaboration (Forrester, 2015). Most of the over 150 DSRIs 
involve a grouping of departments or groups with an interest in data science, each in their own domain, 
into a higher level DSRI. A large example is the Fraunhofer Big Data Alliance32, which in the above 
terminology would be a DSRI of DSRIs, describes itself as: “The Fraunhofer Big Data Alliance consists of 30 
institutes bundling their cross-sector competencies. Their expertise ranges from market-oriented big data 
solutions for individual problems to the professional education of data scientists and big data specialists.” 

In principle, a DSRI would strive for higher-level, scientific and strategic goals, such as contributing to 
data science (i.e., the science underlying data science) in contrast with the contributions made in a 
specific domain by each partner organization. But how does the DSRI operate? How should it be 
organized so as to encourage collaboration and achieving higher-level goals? 

While data science is inherently multi-disciplinary, hence collaborative, in nature, scientists and 
practitioners lack training in collaboration and are motivated to focus on their objectives and domain. 
Why would a bioinformaticist (bioinformatician) attempt to establish a data science method that goes 
beyond her requirements, especially as it requires an understanding of domains such as deep learning? 
Collaboration is also a significant organizational challenge specifically for the over 150 DSRIs that were 
formed as a federation of organizational units each of which conduct data science activities in different 
domains. Like the bioinformaticist, each organization has its own objectives, budget, and investments in 
funding and intellectual property. In such an environment, how does a DSRI establish strategic directions 
and set research objectives? One proposal is through a DSRI Chief Scientific Officer (Brodie, 2018b). 

8 What is world-class data science research? 
While many data science groups share a passion for data science, they do not share common data 

science components – principles, data, models, and methods; pipelines; data science infrastructures; and 
data infrastructures. This is understandable given the state of data science, and the research needs of the 
individual groups; however, to what extent are these groups pursuing data science, per se? This raises our 
original questions: What is data science? and What is world-class data science research? These questions 
are central to planning and directing data science research such as in DSRIs. 

There are two types of data science research, domain specific contributions and contributions to the 
discipline of data science itself. Domain specific, world class data science research concerns applications 
of data science in specific domains resulting in domain-specific discoveries that are recognized in its 
domain as being world class. There are many compelling examples, as in section 6. To be considered data 
science, the research should adhere to the definition of data science, be based on some version of the 
data science method, use a data science pipeline, and utilize the components of data science. The data 
science components or the data science method, including scale, accelerating discovering, finding 
solutions that might not have been discovered otherwise, should be critical to achieving the result in 
comparison with other methods. 

Equally or even more important, world class data science research should establish data science as a 
science or as a discipline with robust principles, data, models, and methods; pipelines; a data science 
method supported by robust data science infrastructures, and data infrastructures applicable to multiple 
domains. Such a contribution must be proven with appropriate applications of the first type. A wonderful 

                                                             
30 https://datascience.harvard.edu/ 
31 The DSRI list that I maintain by searching the web grows continuously - an excellent exercise for the 
reader. 
32 https://www.bigdata.fraunhofer.de/en.html 



example of generalizing a domain-specific data science method is extending the network analysis method 
applied to some specific medical corpora used successfully in drug discovery (Spangler et. al., 2014) to 
domain-independent scientific discovery applied to arbitrary scientific corpora (Nagarajan, 2015). The 
original method was implemented in three stages, Exploration, Interpretation, and Analysis, using a tool 
call Knowledge Integration Toolkit (KnIT). Exploration involved lexical analysis and text mining of abstracts 
of the entire corpora up to 2003 (240,000) of medical literature mentioning kinases, a type of protein that 
governs cell growth, looking for proteins that govern p53, a tumor suppressor. This resulted in 70,000 
papers to analyze further. Interpretation analyzed some of the papers to produce a model of each kinase 
and built a connected graph that represents the similarity relationship among kinases. The analysis phase 
identified and eliminated kinases that are not p53, ultimately resulting in discovering nine kinases with 
the desired properties. A retrospective search of the literature verified that seven of the nine were proven 
empirically to be tumor suppressors (candidates for cancer drugs) in papers published 2003-2013. This 
significantly raised the probability that the 2 remaining kinases were as yet undiscovered candidates for 
cancer drugs. These were world-class data science results and a magnificent example of analysis involving 
complexity beyond human cognition. First and foremost, the two kinases were accepted by the medical 
community as candidate tumor suppressors, i.e., published in medical journals. Second, the discovery was 
due to data science methods. Data science accelerated discovery since typically one such cancer drug 
candidate is found every two to three years; once the KnIT model was built the candidate kinases were 
discovered in approximately three months. The verification method, the retrospective analysis of cancer 
drug discovery 2003-2013 was brilliant. As with most data science analysis, the results were probabilistic, 
i.e., the nine candidate kinases were determined to likely candidates by the network model of the kinases, 
however, verification, or further confirmation, was established by a method outside data science 
altogether, i.e., discovered previously published results. The original analytical method that provided 
automated hypothesis generation (i.e., these kinases are similar) based on text mining of medical corpora 
concerning proteins was generalized to automated hypothesis generation based on text mining of any 
scientific corpora. While the first result was domain-specific, hence an application of data science, the 
extension of the domain-specific method to all scientific domains was a contribution to the science of data 
science. This is a higher level of world-class data science research. 

The charter of every DSRI should include both domain-specific data science research and research to 
establish data science as a discipline. Since most DSRIs were formed from groups successfully practicing 
domain-specific data science, they are all striving for world class domain-specific data science. Without 
world class research in data science per se, it would be hard to argue that the DSRI contributes more than 
the sum of its parts. One might argue that lacking research into data science per se means that the DSRI 
has more of an organizational or marketing purpose than a research focus. The primary objective of a 
significant portion of the 150 DSRIs referenced above appears to be organizational, e.g., to bring together 
the various organizations that conduct data science. In contrast, in 2012 the Irish Government established 
Insight Center for Data Analytics as a national DSRI to conduct data science research and apply it in 
domains relevant to Ireland’s future. In doing so it set objectives much higher than bringing together data 
science activities from its seven universities. The government of Ireland, through its funding agency, 
Science Foundation Ireland (SFI), continuously evaluates Insight on world class data science. This includes 
advancing data science principles, data, models, and methods and proving their value by achieving results 
in health and human performance, enterprises and services, smart communities and internet of things, 
and sustainability. More challenging, however, SFI requires that Insight contributes more than the sum of 
the parts, the individual units working on their own. This contributes to the science of data science by 
developing principles, data models, methods, pipelines, and infrastructure that is applicable to multiple 
domains.  

9 Conclusions 
Data science is an emerging paradigm with the primary advantage of accelerating discovery of 

correlations between variables at a scale and speed beyond human cognition and previous discovery 
paradigms. Data science differs paradigmatically from its predecessor scientific discovery paradigms that 
were designed to discover causality – Why a phenomenon occurred - in real contexts. Data science is 



designed to discover correlations – What phenomena may have or may occur - in data purported to 
represent some real or imagined phenomenon. Unlike previous scientific discovery paradigms that were 
designed for scientific discovery and are now applied in many non-scientific domains, data science is 
applicable to any domain for which adequate data is available. Hence, the potential of broad applicability 
and accelerating discovery in any domain to rapidly reduce the search space for solutions holds 
remarkable potential for all fields. While already applicable and applied successfully in many domains, 
there are many challenges that must be addresses over the next decade as data science matures. 

My decade-long experience in data science suggests that there are no compelling answers to the 
questions posed in this chapter. This is due in part to its recent emergence, it’s almost unlimited breadth 
of applicability, and to its inherently multidisciplinary, collaborative nature.  

To warrant the designation data science, this emerging paradigm, as a science, requires fundamental 
principles and techniques applicable to all relevant domains. Since most “data science” work is domain 
specific, often model- and method-specific, “data science” does not yet warrant the designation of a 
science. This is not a mere appeal for formalism. There are many challenges facing data science such as 
validating results thereby minimizing the risks of failures. The potential benefits of data science, e.g., in 
accelerating the discovery of cancer cures and solutions to global warming, warrant establishing rigorous, 
efficient data science principles and methods that could change our world for the better. 
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