Summarizing Data Part 2
Click here to open the slides (PDF).
library(magrittr)
library(dplyr)
data(mtcars)
str(mtcars)
mtcars$gear %>%
table() %>%
prop.table()
`%>%`(mtcars$gear, table)
`+`
2 + 3
`+`(2, 3)
`+` <- function(e1, e2) {
print('Happy April Fools!')
}
2 + 3
a <- 2 + 4
a = 2 + 4
a
tab <- mtcars$gear %>%
table() %>%
prop.table()
tab
mtcars$gear %>%
table() %>%
prop.table() ->
tab
tab
letters %in% c('a','e','i','o','u')
letters %in% c('a','e','i','o','u') %>% which()
mtcars %>%
filter(mpg > 20 & cyl == 6) %>%
select(mpg, wt)
filter(mtcars, mpg > 20 & cyl == 6) %>% select(mpg, wt)
head(mtcars, n = 3)
tail(mtcars)
mtcars %>% head(n = 3) %>% rename(miles_per_gallon = mpg)
mtcars2 <- mtcars %>% rename(miles_per_gallon = mpg)
head(mtcars2)
mtcars2[1, 'miles_per_gallon'] <- 0
mtcars2$cyl / mtcars2$miles_per_gallon
mtcars2[1, 'miles_per_gallon'] <- NA
mean(mtcars2$miles_per_gallon)
mean(mtcars2$miles_per_gallon, na.rm = TRUE)
4 / 2
4 / NA
NA / 4
4 / 0 # Why is this Inf
0 / 4